# Airplane Manual FK 9 ELA



Certified as Ultralight according BFU 95 / LTF-UL 2003

Advanced Italien regulation type

This manual must be carried in the aircraft at all times.

This is the Pilot's operating manual and approved flight manual.

Kennblatt Nr. 61102.2 DPR 133/Annex V°

Serial Nr.:

Manual Nr.:

9-\_\_\_-1ELA E

Manufacturer: FK-Lightplanes Krosno – Poland Design Organisation and Holder on Product Rights: B&F Technik Vertiebs GmbH Speyer - Germany

No part of this manual may be reproduced or changed in any manner without written agreement of the aircraft manual department.

Design Organisation, Holder on Product Rights and customer support:

B&F Technik Vertiebs GmbH Speyer – Germany Anton-Dengler-Str. 8

D-67346 Speyer

Tel.: +49 (0) 6232 – 72076 Fax: +49 (0) 6232 – 72078 email: info@fk-lightplanes.com

for service & parts use service@fk-lightplanes.com

www.fk-servicecenter.com

Important service informations / bulletins can be obtained from our website. Check our website regularly as automatic update by mail is not assured.

FK Lightplanes

#### REVISIONS

The following table contains a list of valid pages. This table will be updated with every revision. The pilot is responsible for keeping all pages of this manual to the revision status indicated in the table, by exchanging the relevant pages when a new revision has been published.

For updates check the homepage of FK Lightplanes under <a href="www.fk-lightplanes.com">www.fk-lightplanes.com</a> or <a href="www.flugservice-speyer.de">www.flugservice-speyer.de</a> regularly. New revisions can be downloaded there. If you do not have an internet connection, revisions can be ordered from FK Lightplanes.

Revisions and Service Bulletins for the ROTAX engine are available on www.rotax-aircraft-engines.com.

List of effective Pages Date 1. of Mai 2013

| Page | Revision | Date    | ugoo D | Page | Revision | Date    |
|------|----------|---------|--------|------|----------|---------|
| 0-1  | 8        | 1.09.12 |        | 0-2  | 10       | 1.05.13 |
| 0-3  | 9        | 1.12.12 |        | 0-4  | 9        | 1.12.12 |
| 0-5  | 9        | 1.12.12 |        | 0-6  | 9        | 1.12.12 |
| 0-7  | 9        | 1.12.12 |        |      |          |         |
| 1-1  | 4        | 1.04.11 |        | 1-2  | 4        | 1.04.11 |
| 1-3  | 4        | 1.04.11 |        | 1-4  | 6        | 1.12.11 |
| 2-1  | 2        | 1.02.10 |        | 2-2  | 6        | 1.12.11 |
| 2-3  | 6        | 1.12.11 |        | 2-4  | 7        | 1.02.12 |
| 2-5  | 2        | 1.02.10 |        | 2-6  | 8        | 1.09.12 |
| 2-7  | 9        | 1.12.12 |        |      |          |         |
| 3-1  | 9        | 1.12.12 |        | 3-2  | 8        | 1.09.12 |
| 3-3  | 8        | 1.09.12 |        |      |          |         |
| 4-1  | 10       | 1.05.13 |        | 4-2  | 10       | 1.05.13 |
| 4-3  | 10       | 1.05.13 |        | 4-4  | 4        | 1.04.11 |
| 4-5  | 1        | 1.12.09 |        | 4-6  | 1        | 1.12.09 |
| 4-7  | 7        | 1.02.12 |        | 4-8  | 4        | 1.04.11 |
| 5-1  | 3        | 1.02.11 |        | 5-2  | 6        | 1.12.11 |
| 6-1  | 7        | 1.02.12 |        | 6-2  | 7        | 1.02.12 |
| 6-3  | 7        | 1.02.12 |        |      |          |         |
| 7-1  | 6        | 1.12.11 |        | 7-2  | FE       | 1.11.09 |
| 7-3  | FE       | 1.11.09 |        | 7-4  | 6        | 1.12.11 |
| 7-5  | 3        | 1.02.11 |        | 7-6  | 7        | 1.02.12 |
| 7-7  | 6        | 1.12.11 |        | 7-8  | 5        | 1.10.11 |
| 7-9  | 6        | 1.12.11 |        | 7-10 | 5        | 1.10.11 |
| 7-11 | 9        | 1.12.12 |        | 7-12 | 8        | 1.09.12 |
| 7-13 | 9        | 1.12.12 |        | 7-14 | 9        | 1.12.12 |
| 7-15 | 9        | 1.12.12 |        | 7-16 | 9        | 1.12.12 |
| 8-1  | 6        | 1.12.11 |        | 8-2  | 4        | 1.04.11 |
| 8-3  | FE       | 1.11.09 |        | 8-4  | 7        | 1.02.12 |
| 8-5  | 7        | 1.02.12 |        | 8-6  | 7        | 1.02.12 |
| 8-7  | 7        | 1.02.12 |        | 8-8  | 7        | 1.02.12 |
| 9-1  | 8        | 1.09.12 |        | 9-2  | 8        | 1.09.12 |

# **TABLE OF CONTENTS**

| 1. | GENER  | RAL                           | 1-1 |
|----|--------|-------------------------------|-----|
|    | 1.1.   | Airplane Three Side View      | 1-2 |
|    | 1.2.   | Technical Data                | 1-3 |
|    | 1.3.   | Abbreviations and Terminology | 1-3 |
| 2. | LIMITA | TIONS                         | 2-1 |
|    | 2.1.   | General                       | 2-1 |
|    | 2.2.   | Airspeed Limitations          | 2-1 |
|    | 2.3.   | Airspeed Indicator Markings   | 2-2 |
|    | 2.4.   | Power Plant Limitations       | 2-2 |
|    | 2.5.   | Propeller                     | 2-3 |
|    | 2.6.   | Weights                       | 2-4 |
|    | 2.7.   | C.G. Limits                   | 2-4 |
|    | 2.8.   | Maneuvers                     | 2-4 |
|    | 2.9.   | Flight Load Factors           | 2-5 |
|    | 2.10.  | Kind of Operation             | 2-5 |
|    | 2.11.  | Fuel / Oil / Coolant          | 2-5 |
|    | 2.12.  | Passenger Seating             | 2-5 |
|    | 2.13.  | Colour                        | 2-6 |
|    | 2 1/   | Flootric                      | 2-6 |

|    | 2.15. | Placards2-                       | -6 |
|----|-------|----------------------------------|----|
| 3. | EMERO | GENCY PROCEDURES3-               | -1 |
|    | 3.1.  | General                          | -1 |
|    | 3.2.  | Engine Failure 3-                | -1 |
|    | 3.3.  | Fuel Pressure Low3-              | -1 |
|    | 3.4.  | Generator Fault / Overvoltage 3- | -1 |
|    | 3.5.  | Glide3-                          | -1 |
|    | 3.6.  | Emergency Landing 3-             | -2 |
|    | 3.7.  | Strong Vibrations 3-             | -2 |
|    | 3.8.  | Steering Problems3-              | -2 |
|    | 3.9.  | Flap Failure3-                   | -2 |
|    | 3.10. | Engine / Carburetor Fire 3-      | -3 |
|    | 3.11. | Fire and Smoke (Electric) 3-     | -3 |
|    | 3.12. | Stall recovery 3-                | -3 |
| 4. | NORM  | AL PROCEDURES4-                  | -1 |
|    | 4.1.  | General 4-                       | -1 |
|    | 4.2.  | Regular Inspection4-             | -1 |
|    | 4.3.  | Preflight Inspection4-           | -1 |
|    | 4.4.  | Engine Start4-                   | -4 |
|    | 4.5.  | Taxi4-                           | -4 |
|    | 4.6   | Refore Take-off 4-               | .5 |

|    | 4.7.  | Takeoff4                              | -5 |
|----|-------|---------------------------------------|----|
|    | 4.8.  | Climb4                                | -6 |
|    | 4.9.  | Cruise4                               | -6 |
|    | 4.10. | Descent4                              | -6 |
|    | 4.11. | Landing4                              | -7 |
|    | 4.12. | Touch and Go4                         | -8 |
|    | 4.13. | After Landing / Parking4              | -8 |
| 5. | PERFO | PRMANCE5                              | -1 |
|    | 5.1.  | General5                              | -1 |
|    | 5.2.  | Takeoff Distance5                     | -1 |
|    | 5.3.  | Cruise Performance5                   | -2 |
|    | 5.4.  | Service Ceiling5                      | -2 |
| 6. | WEIGH | IT AND BALANCE6                       | -1 |
|    | 6.1.  | General 6                             | -1 |
|    | 6.2.  | Basic Empty Weight 6                  | -1 |
|    | 6.3.  | Determination of C.G. for the Flight6 | -3 |
| 7. | SYSTE | MS DESCRIPTION7                       | -1 |
|    | 7.1.  | General7                              | -1 |
|    | 7.2.  | Instrument Panel7                     | -1 |
|    | 73    | MID (Multi Information Panel) 7       | -2 |

|    | 7.4.  | Rescue system7-                              | 4 |
|----|-------|----------------------------------------------|---|
|    | 7.5.  | Flaps7-                                      | 6 |
|    | 7.6.  | Tyres7-                                      | 6 |
|    | 7.7.  | Baggage7-                                    | 6 |
|    | 7.8.  | Seats and seatbelts7-                        | 6 |
|    | 7.9.  | Doors                                        | 7 |
|    | 7.10. | Engine7-                                     | 7 |
|    | 7.11. | Fuel System7-                                | 7 |
|    | 7.12. | Brakes7-14                                   | 4 |
|    | 7.13. | Heating and Ventilation7-1                   | 4 |
|    | 7.14. | Electrical System7-1                         | 4 |
|    | 7.15. | Pitot / Static System7-10                    | 6 |
| 8. | HANDL | ING, SERVICING AND MAINTENANCE8-             | 1 |
|    | 8.1.  | General8-                                    | 1 |
|    | 8.2.  | Ground Handling8-                            | 1 |
|    | 8.3.  | Cleaning8-                                   | 1 |
|    | 8.4.  | General Advice8-                             | 1 |
|    | 8.5.  | Regular Maintenance / Lubrication Schedule8- | 2 |
|    | 8.6.  | Time between Overhaul (TBO)8-                | 2 |
|    | 8.7.  | Fuel System Check / Cleaning8-               | 4 |
|    | 8.8   | Control Surface Angle 8-                     | 1 |

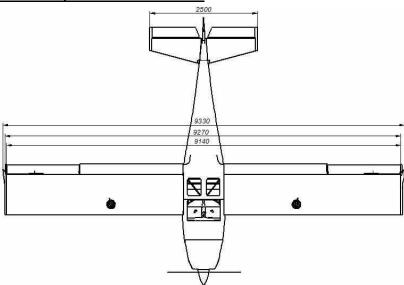
|    | 8.9.   | Jacking / Towing / Storage 8-4                  |
|----|--------|-------------------------------------------------|
|    | 8.10.  | Main / Subsidiary Structure 8-6                 |
|    | 8.11.  | Materials for minor repairs 8-6                 |
|    | 8.12.  | Special Repair and Check Procedures8-6          |
|    | 8.13.  | Required Tools8-6                               |
|    | 8.14.  | Weighing 8-6                                    |
|    | 8.15.  | Mounting / Maintenance of the Rescue System 8-7 |
|    | 8.16.  | Assembly of the Aircraft 8-7                    |
| 9. | SUPPL  | .EMENTS9-1                                      |
|    | 9.1.   | General9-1                                      |
|    | 9.2.   | Engine Manual9-1                                |
|    | 9.3.   | Rescue System9-1                                |
|    | 9.4.   | Avionics / Special Engine Instruments 9-1       |
|    | 9.5.   | Kremen Propeller9-1                             |
|    | 9.6.   | Sailplane Towing9-1                             |
|    | 9.6.1. | Technical Data / Limitations9-1                 |
|    | 9.6.2. | Towing General9-2                               |
|    | 9.6.3. | Towing Takeoff9-2                               |
|    | 9.6.4. | Towing Disconnect9-2                            |
|    | 965    | Towing Landing 9-2                              |

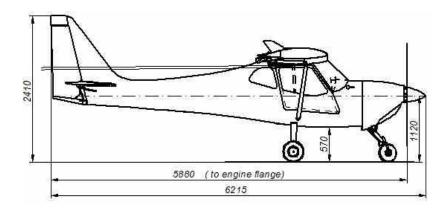
#### 1. General

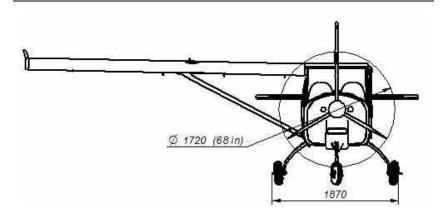
This manual must be read carefully by the owner and operator in order to become familiar with the operation of the FK 9. The manual presents suggestions and recommendations to help obtain safe and maximum performance without sacrificing economy.

The owner and operator should also be familiar with the applicable aviation regulations concerning operation and maintenance of this airplane.

All limits, procedures, safety practices, servicing, and maintenance requirements contained in this manual are considered mandatory for the continued airworthiness of the airplane.


All values in this manual are based on ICAO Standard Atmosphere conditions and maximum takeoff weight (MTOW).


The pilot in command has to make sure that the airplane is airworthy and operated according to this manual.


Non-compliance with handling, maintenance and checking instructions as indicated in the flight and maintenance manuals as well as the respective updates which are published in the manufacturer's website, will void warranty and/or guarantee claims.

All variants of airframes and powerplants can be combined as certified.

# 1.1. Airplane Three Side View







## 1.2. Technical Data

 Wing span:
 9,25 m
 Length:
 5,94 m

 Wing area:
 10,73 qm
 Height:
 2,41 m

## 1.3. Abbreviations and Terminology

## a) Speeds

| IAS | Indicated airspeed = speed as shown on the airspeed indicator                                                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| CAS | Calibrated Airspeed is the indicated airspeed, corrected for position and instrument error. CAS is equal to TAS in standard atmosphere at sea level |
| TAS | True airspeed = speed relative to undisturbed air                                                                                                   |
| VA  | Maneuvering speed = max. speed at which application of full available aerodynamic control will not overstress the airplane                          |
| VRA | Maximum speed in turbulence                                                                                                                         |
| VNE | Never exceed speed is the speed limit that must not be exceeded at any time                                                                         |
| VNO | Maximum structural cruising speed is the speed that should not be exceeded except in smooth air and only with caution                               |
| VS  | Stalling speed or the minimum steady flight speed at which the airplane is controllable                                                             |
| VSO | Stalling speed in landing configuration (full flaps)                                                                                                |
| VX  | Best angle of climb speed which delivers the greatest gain of altitude in the shortest possible horizontal distance                                 |
| VY  | Best rate of climb speed which delivers the greatest gain of altitude in the shortest possible time                                                 |

## b) Meteorological

| ISA | International Standard Atmosphere: OAT in MSL 15°C; pressure in MSL 1013,2hPa; air a perfect dry gas; temperature gradient of 0.65°C per 100m |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| MSL | Mean sea level                                                                                                                                |
| OAT | Outside air temperature                                                                                                                       |

#### c) Weight and Balance

| of Weight and Balance             |                                                                                                                                                                            |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Reference<br>Datum                | An imaginary vertical plane from which all horizontal distances are measured for balance purposes                                                                          |  |  |
| Arm                               | The horizontal distance from the reference datum to the center of gravity of an item                                                                                       |  |  |
| Moment                            | The product of the weight of an item multiplied by its arm                                                                                                                 |  |  |
| Airplane center of gravity (C.G.) | The point at which an airplane would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the airplane |  |  |
| C.G. arm                          | The arm obtained by adding the airplane's individual moments and dividing the sum by the total weight                                                                      |  |  |
| C.G. limits                       | The extreme center of gravity locations within which the airplane must be operated at a given weight                                                                       |  |  |
| Empty weight                      | Weight of the airplane including unuseable fuel, full operating fluids and full oil; equipment as indicated                                                                |  |  |

# d) Conversions

| 1 Liter (Ltr) | = | 0,264 USG  | 1 USG  | = | 3,785 Ltr  |
|---------------|---|------------|--------|---|------------|
| 1 m           | = | 3,28 ft    | 1 ft   | = | 0,3048 m   |
| 1 km/h        | = | 0,54 kt    | 1 kt   | = | 1,852 km/h |
| 1 cm          | = | 0,394 inch | 1 inch | = | 2,54 cm    |
| 1 bar         | = | 14,5 psi   | 1 psi  | = | 0,069 bar  |
| 1 ka          | = | 2.2 lbs    | 1 lbs  | = | 0.45 ka    |

# 2. Limitations

#### 2.1. General

This chapter contains limitations, instrument markings and placards required for the safe operation of the aircraft.

Limitations valid for additional equipment can be found in chapter 9 (supplements).

## 2.2. Airspeed Limitations

This table shows stall speed  $V_S$  and maximum speed  $V_{FE}$  for the respective flap setting (based on a weight of 472,5 kg):

| Flap pos. | ٧s      | V <sub>FE</sub>      | Remark                                      |
|-----------|---------|----------------------|---------------------------------------------|
| 2         | 65 km/h | 105 km/h             | short field landing                         |
| 1         | 70 km/h | 117 km/h             | takeoff / normal landing                    |
| 0         | 75 km/h | 230 km/h<br>215 km/h | cruise with Junkers rescue system installed |

| never exceed speed                   | V <sub>NE</sub> : | 230 km/h |
|--------------------------------------|-------------------|----------|
| with Junkers Rescue System installed | V <sub>NE</sub> : | 215 km/h |
| max. speed in turbulence             | V <sub>RA</sub> : | 184 km/h |
| maneuvering speed                    | V <sub>A</sub> :  | 151 km/h |
| best angle of climb (flaps pos. 1)   | V <sub>X</sub> :  | 95 km/h  |
| best rate of climb (flaps up)        | V <sub>Y</sub> :  | 110 km/h |
| maximum crosswind component          | CWC:              | 27 km/h  |
| with door(s) removed                 |                   | 100 km/h |

## 2.3. Airspeed Indicator Markings

Every aircraft must be equipped with an airspeed indicator type "Winter FK 9 Mk3/Mk4", which is calibrated to the aircraft. This is the master airspeed indicator, even with an EFIS installed.

The airspeed indicator has following markings and shows IAS in [km/h]:

| white arc     | 1,1*VSO to VFE<br>72 to 105 km/h                                   | full flap operating range (flaps in pos. 2) |
|---------------|--------------------------------------------------------------------|---------------------------------------------|
| green arc     | 1,1*VS1 to VRA<br>83 to 184 km/h                                   | normal operating range (flaps in pos. 0)    |
| yellow radial | at VA 151 km/h                                                     | maneuvering speed                           |
| yellow arc    | VRA to VNE<br>184 to 230 km/h<br>Junkers Rescue<br>184 to 215 km/h | operate with caution, only in smooth air    |
| red radial    | at VNE 230 km/h<br>Junkers Rescue<br>215 km/h                      | max. speed for all operations               |

## 2.4. Power Plant Limitations

This is summary of the respective (ROTAX or M160) engine manual. In case of any discrepancy the engine manual shall apply.

|                 | M160 (SMART)                                                       |                           |  |  |
|-----------------|--------------------------------------------------------------------|---------------------------|--|--|
|                 | 60 KW                                                              | 74 KW                     |  |  |
| Oil             | automobile - o                                                     | automobile - oil (API SG) |  |  |
| Oil capacity    | 3,2 l; difference MAX - MIN 0,5 l<br>Note: never fill up above MAX |                           |  |  |
| Oil temperature | min 50°C, max. 140°C normal 100 - 130°C                            |                           |  |  |
| Oil pressure    | 1,5 bar to 4,5 bar                                                 |                           |  |  |
| Fuel            | <b>Unleaded</b> car fuel without bioethanol (min 95 RON)           |                           |  |  |
| Manifold press  | 1,9 (+0,1/-0,2) bar                                                | 2,3 (+0,1/-0,1) bar       |  |  |
| Water temp.     | normal 90°C; maximum 105°C                                         |                           |  |  |

|                 | ROTAX 912 UL                                                | ROTAX 912 ULS |  |
|-----------------|-------------------------------------------------------------|---------------|--|
| Oil             | automobile - oil (API SF or SG)                             |               |  |
| Oil level       | 2,6 Ltr (min) to 3,05 Ltr (max)                             |               |  |
| Oil temperature | min 50°C, max. 140°C min 50°C, max. 130°C                   |               |  |
| Oil pressure    | 1,5 bar to 5 bar (engine start 7 bar)                       |               |  |
| Fuel            | car fuel without bioethanol (min 95 RON) MOGAS, AVGAS 100LL |               |  |
| Fuel pressure   | 0,15 bar to 0,4 bar                                         |               |  |
| CHT             | max. 120°C                                                  |               |  |
|                 | when using water / glycol mixture                           |               |  |

#### Note: Subject: Oil system, Engine lubrication system

Engines which have had the prop spun for more than 1 turn in reverse direction allow air to be injested into the valve train.

#### Action:

- It is forbidden to spun the prop in reverse direction for more than 1 turn.
- Inspection for correct venting of the oil system has to be performed in cases when the prop has been spun in reverse direction for more than 1 turn.

## 2.5. Propeller

| Pos. | Engine        | Propeller                    | Diameter |
|------|---------------|------------------------------|----------|
| 01   | ROTAX 912 UL  | Junkers PR-170-3R            | 1700 mm  |
| 02   | ROTAX 912 UL  | Warp / DUC 3 – blade         | 1720 mm  |
| 03   | ROTAX 912 UL  | Kremen SR 2000 (adjustablel) | 1700 mm  |
| 04   | ROTAX 912 ULS | Sport Prop Klassik 3 blade   | 1710 mm  |
| 05   | ROTAX 912 ULS | Warp / DUC 3 – blade         | 1720 mm  |
| 06   | M 160 (60 KW) | Warp / DUC 3 - blade         | 1720 mm  |
| 07   | M 160 (74 KW) | Warp / DUC 3 - blade         | 1720 mm  |
| 08   | ROTAX 912 ULS | DUC FC 3 - Blatt             | 1727 mm  |

## 2.6. Weights

Maximum weight per seat: 100 kg

Baggage aft max: with wingtanks 35 kg with fuselage tanks 20 kg

Empty weight: acc. actual weighing

Maximum Takeoff Weight: 472,5 kg if certified acc. Maximum Landing Weight 472,5 kg LTF-UL 2003

#### 2.7. C.G. Limits

forward center of gravity: 0,22m behind datum aft center of gravity 0,44m behind datum

Datum is the leading edge of the wing.

For weighing, the firewall has to be in the vertical position.

#### 2.8. Maneuvers

The FK 9 is certified as an Ultralight aircraft.

Acrobatic maneuvers, including spins, bank angles greater than 60°, as well as IFR and VFR night are prohibited.

<u>Note regarding spins:</u> In the light aircraft/ultralight category spinning is strictly prohibited and is not required to demonstrate during flight test program.

Despite this, all FK aircraft have also been tested regarding their general spin characteristics. In general it is important to know that a spin is a very complex flight condition and relates to many individual factors like weight, centre of gravity, mass distribution, aerodynamic conditions, number of spin turns already performed, kind of control deflections already made and so on. For example, the spinning characteristic of the same aircraft on the same day can differ significantly because of differences in mass distribution or dirt on surfaces. This can cause a "non recoverable" spin-condition!

In practice this means that <u>flying into stalls on purpose must be avoided and recovery procedures have to be performed immediately!</u>

Spinning any aircraft which is not certified for this maneuver is extremely dangerous! The onset of a stall is indicated to the pilot by many factors like IAS, stick pressure, horizon level. Stalls can also be result from abrupt control deflections / changes in angle of attack!

In strong turbulence the airspeed must be reduced below V<sub>A</sub> (151 km/h).

When flying off grass strips with long grass, the wheel pants must be removed to avoid damage.

When flying with doors removed, maximum speed is 100 km/h. Flight with door open is prohibited.

Maneuvers with zero or negative load factors must be avoided under all conditions. These maneuvers may cause a fire due to fuel spill when using ROTAX engines with carburetors.

## 2.9. Flight Load Factors

|                                        | positive | negative |
|----------------------------------------|----------|----------|
| Maximum load factor at V <sub>A</sub>  | + 4g     | - 2g     |
| Maximum load factor at V <sub>NE</sub> | + 4g     | - 1,5g   |
| Maximum load factor with flaps down    | + 2g     | 0g       |

#### 2.10. Kind of Operation

The FK 9 is approved as Ultralight aircraft for VFR day (Nfl 1-96/82).

#### 2.11. Fuel / Oil / Coolant

Engine operating manual is the governing one!

| Engine operating manual is the governing one: |                                                              |  |
|-----------------------------------------------|--------------------------------------------------------------|--|
| Tank                                          | Version fuselage tank: Capacity 60 Ltr; 1 Ltr not useable    |  |
|                                               | optional wingtanks 2 x 20 Ltr, 2 Ltr each tank not useable   |  |
|                                               | Version wing tank: 2 x 38 Ltr; 1,5 Ltr each tank not useable |  |
|                                               | (max 15 Ltr difference between left/right tank)              |  |
| Fuel                                          | Compare engine limitations                                   |  |
|                                               | Unleaded fuel without bioethanol recommended, mandatory      |  |
|                                               | for M160 (smart)                                             |  |
|                                               | AVGAS should only be used if MOGAS is not available or in    |  |
|                                               | case of problems caused by vapour locks                      |  |
| Oil                                           | Compare engine limitations                                   |  |
|                                               | synthetic oils preferred; do not use aircraft oil!           |  |
| Oil capacity                                  | Compare engine limitations                                   |  |
| Coolant                                       | Compare engine limitations                                   |  |
|                                               |                                                              |  |

## 2.12. Passenger Seating

The aircraft has 2 seats. It can be flown from either seat.

## 2.13. Colour

The surface of the structure (composite structure) must be white or yellow. Local coloured decoration is possible. Complete painting in different colours only with agreement of the manufacturer.

#### 2.14. Electric

The electrical system is designed for a maximum load of 12 A.

## 2.15. Placards

| Location:                                           | Placard:                              |
|-----------------------------------------------------|---------------------------------------|
| Baggage compartment                                 | max. load 20 kg (with fuselage tanks) |
|                                                     | max. load 35 kg (with wingtanks)      |
| Brake handle                                        | Brake                                 |
| Brake park valve                                    | Park                                  |
| Cabin heat                                          | cabin heat (option)                   |
| Carburetor heat                                     | carb. (option)                        |
| Choke (ROTAX only)                                  | choke                                 |
| Cockpit                                             | max. TOW 472,5 kg                     |
|                                                     | spins and acrobatics prohibited       |
| Cockpit                                             | Weighing date:                        |
|                                                     | Empty weight:                         |
|                                                     | Poss. load including fuel:            |
| Cockpit rear section                                | Type placard (metal)                  |
| Door handles (inside + outside)                     | OPEN / CLOSE                          |
| Fuel selector(s) in flow direction                  | fuel                                  |
| Fuel selector(s) closed position                    | close                                 |
| Fuel cap(s)                                         | FUEL AVGAS / MOGAS                    |
| Fuel indication                                     | markings every 10l                    |
| Rescue system (vicinity)                            | placard Rescue system                 |
| Rocket Exit Area                                    | Danger: Rocket Exit Area              |
| Safety pin rescue system                            | Remove before flight                  |
| Top of vertical fin                                 | Company logo                          |
| Throttle friction                                   | throttle friction                     |
| Trim handle                                         | trim                                  |
| Trim markings                                       | Neutral; nose up; nose down           |
| VDO Oil temperature indication (no EMS)             | OIL                                   |
| VDO CHT indication (no EMS)                         | CHT                                   |
| Wheel fairings main wheels                          | 2,0 bar                               |
| Wheel fairing nose wheel                            | 1,5 bar                               |
| Wing tip (ext. wing connection mechanism installed) | OPEN / CLOSE                          |
| Towing version only:                                |                                       |
| Handle for towing clutch                            | TOW                                   |
| Towing clutch                                       | max. break load 200kp                 |
| Vicinity of airspeed indicator                      | Care for tow speed!                   |
|                                                     | · · · · · · · · · · · · · · · · · · · |

# Additional Placards Italy only:

| vicinity of door handles:                                             |                                        |  |
|-----------------------------------------------------------------------|----------------------------------------|--|
|                                                                       |                                        |  |
| <b>EMERGENZA</b>                                                      | Emergency                              |  |
|                                                                       |                                        |  |
| cockpit:                                                              |                                        |  |
| VIETATO                                                               | N 0 1                                  |  |
| FUMARE                                                                | No Smoking                             |  |
| SCAMBIARE SERBATOIO ALMENO OGNI 60'                                   | switch tanks at least every 60 Minutes |  |
| MAX DIFFERENZA AMMESSA: 15 LT                                         | max. 15 Ltr difference between tanks   |  |
| IN VOLO NON APRIRE DUE SERBATOI                                       |                                        |  |
| CONTEMPORANEAMENTE                                                    | Don't open both in Flight              |  |
| ESTRARRE IL FUSIBILE DEL GENERATORE IN CASO                           | Remove generator fuse in case of extra |  |
| DI SOVRATENSIONE                                                      | current                                |  |
| QUESTO VELIVOLO E' ABILITATO AL VFR SOLO DIURNO E IN ASSENZA DI GHIAC |                                        |  |
| SONO PROIBITE TUTTE LE MANOVRE ACROBATICHE COMPRESA LA VITE           |                                        |  |
| RIFERIRSI AL MANUALE DI VOLO PER ULTERIORI LIMITAZIONI                |                                        |  |
|                                                                       |                                        |  |
| This aeroplane is approved for day VFR only                           |                                        |  |
| All aerobatic manoeuvres including intention                          | al spinning are prohibited.            |  |
| See Flight Manual for other limitations                               |                                        |  |
|                                                                       |                                        |  |
| vicinity of static port drain                                         |                                        |  |
| DRENAGGIO PRESA                                                       | static port drain                      |  |
| STATICA                                                               | Static port urain                      |  |
|                                                                       |                                        |  |
| vicinity of fuel drain                                                |                                        |  |
| DRENAGGIO                                                             | fuel drain                             |  |
| BENZINA                                                               | luei diaili                            |  |

## 3. Emergency Procedures

#### 3.1. General

The following information is presented to enable the pilot to form, in advance, a definite plan of action for coping with the most probable emergency situations which could occur in the operation of the airplane.

#### 3.2. Engine Failure

| Glide speed           | 100 km/h flaps pos. 1          |  |
|-----------------------|--------------------------------|--|
| Emergency field       | select                         |  |
| Electrical fuel pump  | ON (ROTAX only)                |  |
| Fuel selector(s)      | check ON                       |  |
| Fuel remaining        | check                          |  |
| Ignition (SMART only) | OFF then ON (electronic reset) |  |
| Engine                | start                          |  |
| No restart possible:  |                                |  |
| Emergency landing     | perform respective procedure   |  |

#### 3.3. Fuel Pressure Low

In the event of a fuel pressure low indication, switch ON the electrical fuel pump (ROTAX only). Select fullest tank (Wingtank only).

## 3.4. Generator Fault / Overvoltage

In the event of a power generator fault, switch OFF all non-essential devices in order to save battery power.

Remove generator fuse in case of extra reverse current (Generator overvoltage).

With Smart engine installed, land immediately as the engine ignition is powered by battery. The engine will stop as soon as the battery charge is exhausted. Depending on the rating and charge status of the built-in battery as well as engine RPM, this might happen after 5 to 8 minutes.

## 3.5. Glide

Glide ratio is about 1:8,5 for best glide speed 100 km/h (flaps pos. 1).

## 3.6. Emergency Landing

| Glide speed                | 100 km/h flaps pos. 1      |  |
|----------------------------|----------------------------|--|
| Emergency field            | select                     |  |
| Emergency call (121,5 MHz) | perform                    |  |
| Throttle                   | close                      |  |
| Electrical fuel pump       | OFF (ROTAX only)           |  |
| Fuel selector(s)           | OFF (ROTAX / wintank only) |  |
| Ignition                   | OFF                        |  |
| Safety belts               | pull tight                 |  |
| Final, landing assured:    |                            |  |
| Flaps                      | full down                  |  |
| Battery switch             | OFF                        |  |
| Approach speed             | 90 km/h                    |  |

The glide can be controlled by changing airspeed, flap setting or slip. Use caution, flaps in position 2 cause a lot of drag. Airspeed indication remains valid during slip. Touchdown should be achieved at minimum speed.

## 3.7. Strong Vibrations

| Caused by engine or propeller:  |                              |
|---------------------------------|------------------------------|
| Ignition                        | OFF                          |
| Airspeed                        | reduce                       |
| Emergency landing               | perform respective procedure |
| Caused by the fuselage / wings: |                              |
| Airspeed                        | reduce                       |

## 3.8. Steering Problems

| Aircraft uncontrollable with remaining flight controls: |                              |
|---------------------------------------------------------|------------------------------|
| Throttle                                                | close                        |
| Ignition                                                | OFF                          |
| Rescue system                                           | activate                     |
| Electrical fuel pump                                    | OFF (ROTAX only)             |
| Fuel selector(s)                                        | OFF (ROTAX / wingtanks only) |
| Emergency call (121,5 MHz)                              | perform                      |
| Battery switch                                          | OFF                          |
| Safety belts                                            | pull tight                   |
| Doors                                                   | unlatch                      |

## 3.9. Flap Failure

If the regular flap control fails, the flaps can be moved to the full up and full extend positions by rotating the flap selector to the respective end positions.

# 3.10. Engine / Carburetor Fire

| Fuel selector(s) | OFF (ROTAX / wingtanks only) |
|------------------|------------------------------|
| Throttle         | full open                    |
| if required:     |                              |
| Starter          | engage                       |

#### 3.11. Fire and Smoke (Electric)

| All electrical systems | OFF                                                          |
|------------------------|--------------------------------------------------------------|
| Landing                | as soon as possible; if required, perform emergency landing  |
| Rescue system          | activation only, if immediate emergency landing not possible |

#### 3.12. Stall recovery

A stall can be recognized by light buffeting.

| Elevator | push    |
|----------|---------|
| Wings    | level   |
| Aircraft | recover |

Normally the FK 9 does not enter a spin out of a slowly initiated stall.

Spin recovery (if a spin is entered inadvertently):

| Power       | idle                          |
|-------------|-------------------------------|
| Stick       | neutral                       |
| Full rudder | opposite to direction of spin |
| Flaps       | up                            |
| Wings       | level                         |
| Aircraft    | recover                       |

To avoid overstressing the flaps, they must be retracted immediately.

#### Altitude loss and pitch during stall:

| Configuration     | Vs      | Altitude loss | Pitch after stall |
|-------------------|---------|---------------|-------------------|
| flaps up (pos. 0) | 75 km/h | 40m           | - 5°              |
| flaps pos. 1      | 70 km/h | 40m           | - 5°              |
| flaps pos. 2      | 65 km/h | 35m           | - 5°              |

Stalls (especially with power on), spins and all maneuvers with zero or negative g-load must be avoided under all circumstances, these maneuvers may cause a fire, especially when using ROTAX engines with carburetors.

For all other emergencies use standard procedures!

## 4. Normal Procedures

#### 4.1. General

This chapter deals with the normal procedures recommended for the safe operation of the FK 9.

#### 4.2. Regular Inspection

As Ultralight aircraft are designed to be lighter than normal aircraft but must withstand similiar loads, the structure and the engine must be inspected regularly.

If there is any damage it is recommended to consult a certified maintenance facility or contact the manufacturer. This applies especially to the composite and aluminium structures.

#### 4.3. Preflight Inspection

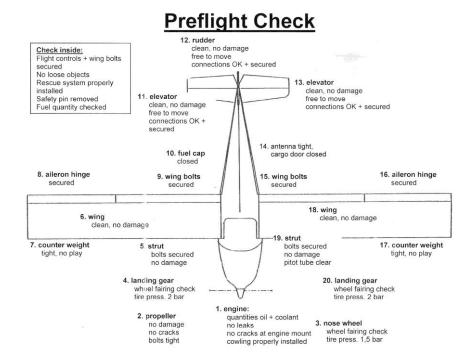
During preflight inspection, the aircraft must be inspected for its general condition. Snow, ice, frost and dirt must be removed completely from the aircraft as they impair aerodynamics and also increase weight.

#### Items marked by \* must be performed prior first flight of the day only.

| Preparation               |                             |
|---------------------------|-----------------------------|
| * Aircraft condition      | airworthy, papers available |
| Weather                   | sufficient                  |
| Baggage                   | weighted and safely stowed  |
| Weight and balance        | checked                     |
| Navigation and charts     | prepared and available      |
| Performance and endurance | calculated and safe         |

| Cockpit                     |                       |
|-----------------------------|-----------------------|
| Battery / ignition          | OFF                   |
| Cabin                       | no loose objects      |
| * Flight controls           | connected and secured |
| * Belts, seats              | check                 |
| Fuel quantity               | check                 |
| * Fuel lines, tank mounting | check                 |
| Rescue system               | remove safety pin     |
| Instruments                 | check                 |

#### **Normal Procedures**


| Engine check (also perform the checks required as mentioned in the engine manual) |                                    |  |
|-----------------------------------------------------------------------------------|------------------------------------|--|
| * Cowling                                                                         | remove                             |  |
| * Exhaust                                                                         | check for cracks + check springs   |  |
| * Carburetor, accessories                                                         | check                              |  |
| Coolant                                                                           | check, add if required             |  |
| Oil quantity                                                                      | check, add if required             |  |
| * Oil-, cooling- and fuel system                                                  | check for leaks                    |  |
| * Spark plugs                                                                     | check                              |  |
| * Engine mount                                                                    | check for cracks                   |  |
| * Vibration damper                                                                | check for cracks                   |  |
| * Fuel lines                                                                      | check for damage                   |  |
| * Cables, bowden-cables                                                           | check for damage                   |  |
| * Italy only: Gascolator                                                          | drain fuel, check for water / dirt |  |
| * Cowling                                                                         | install                            |  |
| Cooling system / air inlets                                                       | clean, inlets clear                |  |

#### Outside check

Wings, fuselage and rudder must be checked for damage. In cold and moist weather conditions the ceconite can loose tension. If there is no structural damage it can be carefully treated with a hair dryer to bring up the tension.

| damage it can be carefully treated with a half dryer to bring up the tension. |                                                                        |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 1. Engine                                                                     | perform check as prescribed above                                      |
| 2. Propeller                                                                  | no damage,cracks                                                       |
| 3. Nose wheel                                                                 | wheel fairings check; * tire press. 1,5 bar                            |
| 4. Right landing gear                                                         | wheel fairings check; *tire press. 2 bar; check main attachment screws |
| 5. Right strut                                                                | * bolts secured, no damage                                             |
| 6. Right wing                                                                 | clean, no damage                                                       |
| 7. Aileron Counter weight                                                     | tight, no play                                                         |
| 8. Aileron hinge                                                              | * secured                                                              |
| 9. Wing bolts                                                                 | * secured                                                              |
| 10. fuel cap(s)                                                               | closed (wingtank: check both caps)                                     |
| 11. Right elevator                                                            | clean, no damage, freedom of movement; * connections OK + secured      |
| 12. Rudder                                                                    | clean, no damage, freedom of movement; * connections OK + secured      |
| 13. Left elevator                                                             | clean, no damage, freedom of movement; * connections OK + secured      |

| 14. Antenna, cargo door         | tight, check closed                                                     |
|---------------------------------|-------------------------------------------------------------------------|
| 14 a. static port (incl. drain) | clear                                                                   |
| 15. Wing bolts                  | * secured                                                               |
| 16. Aileron hinge               | * secured                                                               |
| 17. Balance weight              | tight, no play                                                          |
| 18. Left wing                   | clean, no damage                                                        |
| 19. Left strut                  | * bolts secured, no damage; pitot tube clear, cover removed             |
| 20. Left landing gear           | wheel fairings check; * tire press. 2 bar; check main attachment screws |
| Tail wheel only                 |                                                                         |
| tailwheel                       | wheel OK; * connection OK + secured                                     |



# 4.4. Engine Start

| Seat belts               | fastened                             |
|--------------------------|--------------------------------------|
| Doors                    | closed and locked                    |
| Fuel selector(s)         | OPEN, wintank: fullest tank OPEN     |
| All electrical equipment | OFF                                  |
| Circuit breaker          | check                                |
| Instruments              | check & set                          |
| Rescue system            | check safety pin removed             |
| Battery switch           | ON                                   |
| Ignition                 | ON                                   |
| Electrical fuel pump     | ON (ROTAX only)                      |
| Choke (ROTAX only)       | pull (cold engine only)              |
| Parking Brake            | set                                  |
| Throttle                 | idle (ROTAX: hot engine ½ throttle!) |
| Prop area                | CLEAR                                |
| Starter                  | engage; set 1600 - 1700 RPM          |
| Oil pressure             | check                                |
| Choke (ROTAX only)       | OFF                                  |
| Avionics                 | ON                                   |
| Electrical fuel pump     | OFF (ROTAX only)                     |

# 4.5. Taxi

| Brakes           | check                                     |
|------------------|-------------------------------------------|
| Stick            | pull back to relieve load on nosewheel    |
| Rudder           | do not move if aircraft is not moving     |
| Tail wheel only: |                                           |
| Stick            | push forward to relieve load on tailwheel |

# 4.6. Before Take-off

| Brakes                | set;<br>brakes must hold at least 3200 RPM                                     |
|-----------------------|--------------------------------------------------------------------------------|
| Instruments           | check                                                                          |
| Choke (ROTAX only)    | check OFF                                                                      |
| Magnetos (ROTAX only) | check at min. 2800 RPM; variance between mags. max. 115 RPM, max. drop 300 RPM |
| Electrical fuel pump  | ON (ROTAX only)                                                                |
| Carburetor heat       | OFF (if installed)                                                             |
| Flaps                 | takeoff position (Pos. 0 or 1)                                                 |
| Flight controls       | check                                                                          |
| Trim                  | set                                                                            |
| Doors                 | closed and locked;                                                             |
|                       | end of seatbelts inside the cockpit                                            |
| Oil temperature       | min. 50°C                                                                      |
| CHT                   | min. 60°C                                                                      |

## 4.7. Takeoff

| Brakes                                | apply                                          |  |
|---------------------------------------|------------------------------------------------|--|
| Throttle                              | advance slowly to full power                   |  |
| Manifold pressure<br>(SMART only)     | 1,8 bar (60KW) or 2,3 bar (74 KW)<br>± 0,1 bar |  |
| Engine instruments                    | check, min. 4500 RPM                           |  |
| Brakes                                | release                                        |  |
| Elevator                              | neutral                                        |  |
| at 90 to 100 km/h                     | lift off                                       |  |
| Climb                                 | 100 km/h with flaps in Pos. 1                  |  |
|                                       | 120 km/h with flaps in Pos. 0                  |  |
| Clear of obstacles, at safe altitude: |                                                |  |
| Flaps                                 | up                                             |  |
| Electrical fuel pump                  | OFF (ROTAX only)                               |  |

It is not recommended to takeoff with full flaps as the flaps produce a lot of drag in this position.

#### 4.8. Climb

|                 | ROTAX                  | SMART      |
|-----------------|------------------------|------------|
| Oil temperature | max. 130°C             | max. 140°C |
| CHT             | max. 120°C             | max. 105°C |
| Speed           | 120 km/h with flaps up |            |

#### Hint:

At CHT >115°C (ROTAX only) local condensation in the cooling system will cause continuous loss of cooling fluid. Reduce power setting and increase airspeed until CHT remains below 115°C.

#### 4.9. <u>Cruise</u>

|                 | ROTAX                                     | SMART      |  |
|-----------------|-------------------------------------------|------------|--|
| Oil temperature | max. 130°C                                | max. 140°C |  |
| CHT             | max. 120°C                                | max. 105°C |  |
| Speed           | as required                               |            |  |
| Trim            | set                                       |            |  |
| Fuel            | monitor;                                  |            |  |
|                 | Wingtanks: switch tanks at least every 60 |            |  |
|                 | min; max. 15 Ltr difference between tanks |            |  |

For values of fuel flow and range check chapter 5.

### 4.10. Descent

| Carburetor heat              | ON (if installed) |
|------------------------------|-------------------|
| Fuel selector(s) (wingtanks) | fullest tank OPEN |
| Oil temperature              | min. 50°C         |
| CHT                          | min. 60°C         |

#### Hint:

If engine temperatures remain at or below minimum values during flight (winter operation), it is recommended to cover the radiators with tape.

# 4.11. Landing

| Normal Landing                   |                                                   |
|----------------------------------|---------------------------------------------------|
| Speed                            | reduce to 110 km/h                                |
| Flaps                            | set Pos. 1                                        |
| Speed                            | 100 to 110 km/h (rain + 5 km/h)                   |
| Electrical fuel pump             | ON (ROTAX only)                                   |
| Short prior touchdown            | start flare to achieve touchdown at minimum speed |
| Throttle                         | idle                                              |
| Tail wheel only                  |                                                   |
| Touchdown                        | in 3 point position                               |
| Control stick                    | keep full aft after tail wheel is on the ground   |
| Short Field Landing              |                                                   |
| Speed                            | reduce to 110 km/h                                |
| Flaps                            | set Pos. 1                                        |
| Electrical fuel pump             | ON (ROTAX only)                                   |
| On final                         | reduce speed to 95 km/h                           |
| flaps                            | set Pos. 2                                        |
| Speed                            | 90 to 95 km/h (rain + 5 km/h)                     |
| Short prior touchdown            | start flare to achieve touchdown at minimum       |
| (not to early!)                  | speed                                             |
| Throttle                         | idle                                              |
| Tailwheel only                   |                                                   |
| Touchdown                        | in 3 point position                               |
| Control stick                    | keep full aft after tailwheel is on the ground    |
| Go Around                        |                                                   |
| Throttle                         | advance slowly to full power                      |
| Speed                            | min. 90 km/h                                      |
| Flaps                            | retract to / maintain Pos. 1                      |
| Carburetor heat                  | OFF (if installed)                                |
| Speed                            | 100 km/h                                          |
| Trim                             | set                                               |
| Clear of obstacles, at safe alti | tude:                                             |
| Flaps                            | up                                                |
| Electrical fuel pump             | OFF (ROTAX only)                                  |
| Speed                            | 120 km/h                                          |

Under certain conditions (crosswind, turbulence, forward CG) it is recommended to retract flaps immediately after touchdown.

# 4.12. Touch and Go

| Flaps                          | retract to Pos. 1            |
|--------------------------------|------------------------------|
| Carburetor heat                | OFF (if installed)           |
| Trim                           | set takeoff position         |
| Throttle                       | advance slowly to full power |
| at 90 to 100 km/h              | rotate                       |
| Speed                          | 100 km/h                     |
| Clear of obstacles, at safe al | titude:                      |
| Flaps                          | up                           |
| Electrical fuel pump           | OFF (ROTAX only)             |
| Speed                          | 120 km/h                     |

# 4.13. After Landing / Parking

| Flaps                | up                         |
|----------------------|----------------------------|
| Trim                 | neutral                    |
| Carburetor heat      | OFF (if installed)         |
| Electrical fuel pump | OFF (ROTAX only)           |
| Avionics             | OFF                        |
| Ignition             | OFF                        |
| Battery switch       | OFF                        |
| Rescue system        | secure (insert safety pin) |

# 5. Performance

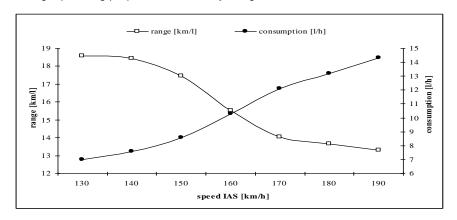
#### 5.1. General

The graphs and tables in this section present performance information corrected for the conditions of ICAO Standard Atmosphere. These data do not contain any safety margin and are based on a clean and well serviced aircraft as well as the application of the mentioned procedures.

#### 5.2. Takeoff Distance

<u>Conditions:</u> Mean sea level (MSL), dry grass surface, takeoff weight 472,5kg, flaps pos. 1.

| Propeller  | Engine        | Takeoff run | to 15m Height |
|------------|---------------|-------------|---------------|
| Junkers    | ROTAX 912 UL  | 120m        | 230m          |
| Warp / Duc | ROTAX 912 UL  | 120m        | 230m          |
| Kremen     | ROTAX 912 UL  | 110m        | 200m          |
| Sportprop  | ROTAX 912 ULS | 100m        | 185m          |
| Warp / Duc | ROTAX 912 ULS | 100m        | 185m          |
| Warp / Duc | M160 (60 KW)  | 120m        | 230m          |
| Warp / Duc | M160 (74 KW)  | 105m        | 190m          |
| Duc FC     | ROTAX 912 ULS | 150m        | 285m          |


#### Correction for differing conditions:

Correct above mentioned values for differing conditions as follows:

| Difference in         | Correction                                 | m   |
|-----------------------|--------------------------------------------|-----|
| 1. Pressure Altitude: | + 10% per 1000ft Pressure<br>Altitude (PA) | + = |
| 2. Temperature:       | +/- 1% per°C temperature deviation         | +/- |
| 3. Slope:             | +/- 10% per 1% slope                       | +/- |
| 4. wet surface:       | + 10 %                                     | + = |
| 5. soft surface:      | + 50%                                      | + = |
| 6. high grass:        | + 20%                                      | + = |

## 5.3. Cruise Performance

The following table (valid for ROTAX 912 UL; M160 (smart) is little better, ROTAX 912 ULS little worse) presents data for fuel consumption and range. For flight planning purpose, add a safety margin of at least 5%.



# 5.4. Service Ceiling

The maximum Altitide in ISA conditions is:

| Engine        | ceiling         |
|---------------|-----------------|
| ROTAX 912 UL  | 14500ft = 4420m |
| ROTAX 912 ULS | 16000ft = 4877m |
| M160 (60 KW)  | 15000ft = 4572m |
| M160 (74 KW)  | 16000ft = 4877m |

Please observe Oxygen requirements and respect any local regulations and rules!

When using the M160 engine do not overboost, observe the engine manual!

## 6. Weight and Balance

#### 6.1. General

To achieve the mentioned performance data and flying abilities, the aircraft must be operated within certified weight and balance limits. Although the aircraft has a wide range for weight and balance, it is not possible to fly with full baggage load, full fuel and 2 heavy pilots at the same time.

Wrong loading has consequences for every airplane:

an aircraft exceeding weight limits will need longer takeoff- and landing distances, climb performance will be decreased and stall speed increased.

A wrong center of gravity will change the flying abilities. A forward C.G. may cause problems during rotation, takeoff and landing. An aft C.G. may cause instability, inadvertent stall or even spin.

The pilot in command must assure prior to each takeoff, that the aircraft is operated within the certified weight and balance limits.

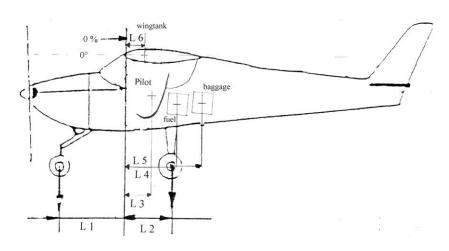
#### 6.2. Basic Empty Weight

Prior to delivery, each aircraft has been weighted with fuselage level, (reference line see drawing below, firewall vertical), including oil and coolant, as well as equipment as indicated but no fuel (except un-drainable fuel). During this procedure the respective arms are determined as well.

By using the following formula, the C.G. is computed. Reference line (datum) for all arms is the leading edge of the wing. All these data are transferred to the Basic Empty Weight and Balance Form (Wägebericht). This "Wägebericht" contains a list of equipment installed and is part of this manual.

All changes to the airplane affecting weight and balance (installation of new equipment etc.) require a new weighing.

## Formula to compute the center of gravity (X):


Center of Gravity in [m / inch] 
$$CG = \frac{\sum M}{\sum G}$$

TW = total weight WF = weight front

WR = weight right WL = weight left

Tricycle

**Tailwheel** WA = weight aft



#### Arms (Datum: wing leading edge):

| L 1 nosewheel | Weight form | L 4 fuselage tank | 1,05 m |
|---------------|-------------|-------------------|--------|
| L 2 wheel     | Weight form | L 5 baggage       | 1,30 m |
| L 3 seat      | 0,45 m      | L 6 wingtank      | 0,21 m |

## 6.3. Determination of C.G. for the Flight

The Pilot is responsible for proper loading of the aircraft.

The C.G. can be determined by computation. The C.G. must always be within limits (compare chapter 2)!

#### Example for computation:

Data in the shaded area are taken from the "Wägebericht".

| Position      | Weight [kg]  | Arm [m]        | Moment [mkg]  |
|---------------|--------------|----------------|---------------|
| Left wheel    | WL = 120,1   | L 2 = 0,527    | 63,29         |
| Right wheel   | WR = 119,1   | L 2 = 0,527    | 62,77         |
| Nose wheel    | WF = 45.8    | L 1 =- 0,854   | - 39,11       |
| Empty weight- | Empty weight | C.G.           |               |
| data          | 285          | 0,31           | 86,95         |
| Pilot(s)      | 150          | L 3 = 0,45     | 67,5          |
| Fuel fuselage | 10           | L 4 = 1,05     | 10,5          |
| Fuel wing     | 0            | L 6 = 0,21     | 0             |
| Baggage       | 5            | L 5 = 1,30     | 6,5           |
|               | Total Weight | C.G.           | Total Moments |
|               |              | (0,22 to 0,44) |               |
| Total         | 450          | 0,381          | 171,45        |

#### Form:

| Position      | Weight [kg]  | Arm [m]        | Moment [mkg]  |
|---------------|--------------|----------------|---------------|
| Left wheel    | WL =         | L 2 =          |               |
| Right wheel   | WR =         | L 2 =          |               |
| Nose wheel    | WF =         | L 1 =          |               |
| Empty weight- | Empty weight | C.G.           |               |
| Data          |              |                |               |
| Pilot(s)      |              | L 3 = 0,45     |               |
| Fuel fuselage |              | L 4 = 1,05     |               |
| Fuel wing     |              | L 6 = 0.21     |               |
| Baggage       |              | L 5 = 1,30     |               |
|               | Total Weight | C.G.           | Total Moments |
|               |              | (0,22 to 0,44) |               |
| Total         |              |                |               |

#### **Systems Description** 7.

#### 7.1. <u>General</u>

The FK 9 is a two-seat high wing ultralight aircraft with aerodynamic steering. It is available in tricycle or tailwheel configuration. The wing has flaps which can be set to three positions. The nosewheel / tailwheel is steerable and connected to the rudder pedals. The aircraft is equipped with dual controls.

#### 7.2. Instrument Panel

The instrument panel contains all required flight and engine instruments. This picture shows a more advanced equipment configuration. Different instrument options are available on request.



- 1 Headphone socket
- 2 Electric panel
- 3 EFIS
- 4 EMS

- 5 Speed indicator
- 6 Altimeter
- 7 MID
- 8 GPS

- 9 Radio
- 10 Transponder

Controls to operate flaps, brakes and trim are located at the center console.

# 7.3. MID (Multi Information Panel)

The MID provides:

- Checklists
- Door status
- Fuel consumption + status
- Flap status
- Maintenance Intervals
- OAT
- System Warnings
- Time
- Voltage

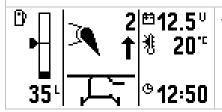


# **Handling MID**

|   | +   | increase value / up                                                      |
|---|-----|--------------------------------------------------------------------------|
|   | Set | short press = 1 beep = acknowledge<br>long press = 2 beeps = page change |
| ſ | -   | decrease value / down                                                    |

## **Screen Rotation**

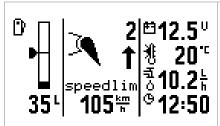



NEXT MAINT.: 24:40h ENGINE TOTAL: 0:20h

DATE: 5.10.09 U1.1

splash screen:

- callsign
- time to next maintenance
- · engine total time
- date
- software version


values are changeable via SETUP screen changes after long press of "Set"



#### normal screen (engine off):

- fuel
- flap position
- door status
- voltage
- outside air temperature
- time

page 7-3



#### normal screen (engine running):

- fuel
- flap position
- speed limit current flaps
- voltage
- outside air temperature
- fuel flow (if installed)
- time

# <u>ENGINE START:</u> BEFORE BEFORE LANDING

## checklist screen:

using the "+" or "-" buttons the cursor can be set to the desired checklist: pressing "Set" executes the selection. the handling of the checklist itself works similar; the checklist page will be left after completion of all items of the list or by pressing "Set" for longer time

# WARNING BATTERY L

SWITCH OFF NON-ESSENT

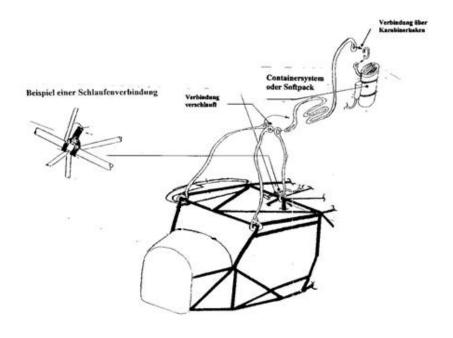
#### warning / failure screens:

following warnings / failures can be displayed:

- fuel gage / fuel low fuel pressure low
- flap setting
- battery low / overcharge
- door left / right (only if engine RPM > 4000)
- generator

messages can be acknowledged by pressing "Set"

| SETUP MENU           | use "+" and "-" to highlight the desired menu, press "Set"; use "+" and "-" to change the item, acknowledge by "Set"; repeat as required               |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| FUEL CONTENT xxxl    | actual fuel on bord must be entered; fuel remaining will be calculated by using fuel flow; not possible if fuel level sensor installed                 |
| FLOW FACTOR xxx%     | the fuel flow indication can be calibrated + adjusted; measured fuel flow 10% less than indicated => set factor 10% higher                             |
| RES.MAINT.TIMER Y/N  | "Y" resets the maintenance counter to 50h                                                                                                              |
| SET TIME xx:xx       | enter actual time, format hh:mm                                                                                                                        |
| SET DATE xx.xx.xxxx  | enter actual date, format dd.mm.yyyy                                                                                                                   |
| DOOR WARNING Y/N     | "Y" if door warning installed                                                                                                                          |
| CALIB TANK EMPTY Y/N | "Y" calibrates the fuel sensor to empty tank                                                                                                           |
| CALIB TANK FULL Y/N  | "Y" calibrates the fuel sensor to full tank                                                                                                            |
| TANK VOLUME xxxI     | set tank volume; no fuel display if "0" entered                                                                                                        |
| RESERVE VOLUME xxI   | enter "0" if no fuel level sensor installed; enter fuel not sensed by fuel level sensor                                                                |
| REGISTRATION xxxxx   | enter aircraft registration                                                                                                                            |
| SYSTEM SETUP ****    | calibration settings protected by PIN                                                                                                                  |
| RESET TOTAL TIME x   | if total engine time must be set to zero, toggle to "Y", and enter with "SET": acknowledge "SURE" by holding "+" and "-" depressed while pushing "Set" |


## 7.4. Rescue system

The FK 9 may be equipped with an optional rescue system mounted inside the fuselage behind the seats. Only original Kevlar harness parts must be used. There must be no obstructions for the deployment of the rocket. Detailed information concerning max. speed, capacity and maintenance cycles are provided in the respective rescue system manual.

## Softpack installation:



The system is activated by pulling the red handle at the center console (as an option, the handle is installed behind the pilot's heads) The safety pin **must** be removed before flight. The safety pin should be installed again during storage / parking of the aircraft to avoid inadvertent activation.



#### 7.5. **Flaps**

The flaps are operated electrically by a lever at the center console. The respective flap position is indicated either by the MID or by other electronic display systems. In case of a flap position sensor failure, the flaps can be selected to the up or fully extend position by turning the lever left of "0" (up) or right of "2" (down).

#### 7.6. Tyres

| Wheel | Size                 | Pressure     |
|-------|----------------------|--------------|
| Main  | 6.00 x 6 or 4.00 x 6 | 1,8 to 2 bar |
| Front | 4.00 x 4             | 1,5 to 2 bar |
| Tail  | 120 mm               |              |

#### 7.7. Baggage

There is one baggage compartment aft of the pilots seats accessible from the outside by a cargo door. It has a maximum capacity of 35 kg with wingtanks and 20 kg with fuselage tanks installed. Smaller items must be put into bags. All things in the baggage compartment should be fixed in order not to move around.

#### 7.8. Seats and seatbelts

The backrests of the seats can be adjusted. The locking mechanism behind the headrest first has to be released to allow adjustment of the lower part of the backrest to the desired position. Then the upper part can be locked as desired. If required for taller pilots, the backrest can be removed completely. The 4-point seatbelts can be adjusted to fit every size. The lock is released







#### **7.9. Doors**

The doors can be opened and locked from inside with a handle. The pilots (left) door can also be opened / closed and locked from the outside. Both doors have a small perspex vent. Doors can be removed completely. Without doors, the airspeed must be limited to 100 km/h.

#### **7.10.** Engine

The engine is a ROTAX 912 UL / 912 ULS four-cylinder, or a three cylinder M160 (smart) engine with turbocharger. The ROTAX has a combined cooling by liquid and air, the smart engine is fully liquid cooled. To shutdown the ROTAX it is recommended, to switch off one ignition circuit by using the ignition test switch before shutting down the engine completely.

The control levers for choke (ROTAX only), carburetor heat (if installed) and throttle are located below the instrument panel.

The engine cowling can easily be removed for maintenance and checks. Oil and coolant can be checked by opening a small cap on the right upper part of the cowling.

#### 7.11. Fuel System

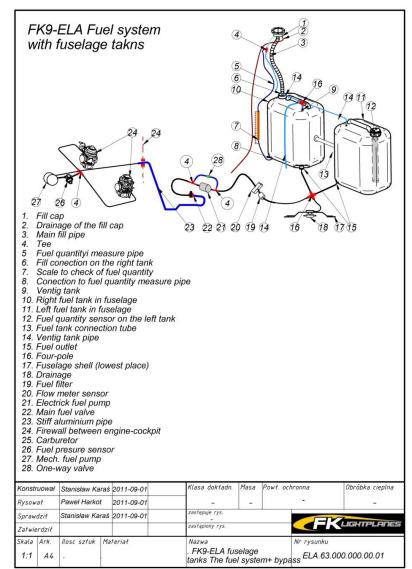
The FK 9 ELA is equipped either with fuselage (Option 1) or with wing tanks (Option 2). There is one engine mounted mechanical fuel pump normally providing fuel to the ROTAX engine. Additionally there is an AUX electrical fuel pump which should be ON during takeoff and landing.

The smart motor is fuel injected and has its own electric fuel pump and filter.

#### **Fuel low Pressure Warning:**

One (optional) fuel pressure warning light, the MID or the MIP indicate fuel pressure below minimum. In this case with the ROTAX motor, switch on the AUX electrical fuel pump.and select the fullest tank.

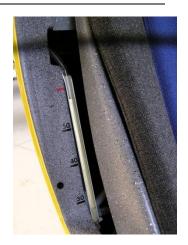
#### **Fuel Quantity Indication:**


Beside the gauges at the respective tanks (see option 1+2), there is an optional fuel quantity indication at the MID / MIP. This indication derives the information from two different sources, depending on the system installed:

- a) the pilots inserts the fuel quantity before takeoff and the MID / MIP computes the remaining fuel using the fuel flow sensor
- b) fuel level sensors are installed in the tank and transmit fuel quantity to the MID / MIP

The fuel quantity indication on the MID / MIP offers a rough estimate of the current fuel on bord. The accuracy of the system is not sufficient for flight planning purposes.

#### **Option 1 Fuselage Tanks:**


1:1 A4



The two fuel tanks are mounted behind the pilots seats. The fuel valve (ROTAX only) is located at the center console with positions ON and OFF. The version with SMART engine has no manual fuel valve because its electrical injection fuel pump shuts off the fuel flow in the line as soon as the ignition is switched off. One fuel drain valve is located at the lower fuselage aft of the main landing gear for checking fuel purity.

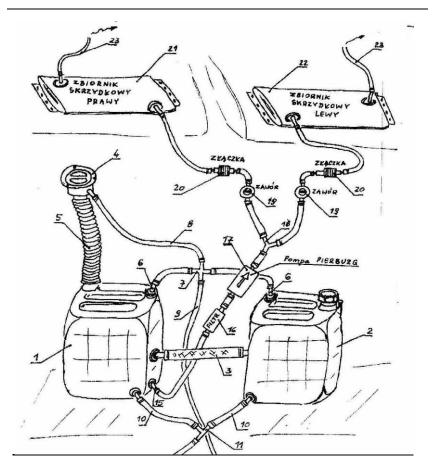
Fuel quantity is indicated by a gauge at the tank. After refuelling, this indication is accurate after both tanks have levelled. This can take up to 5 minutes.

Although the fuel cap has a water drain, it is recommended to secure the cap from water entering during strong rain by putting an extra cover on top of the cap when the aircraft is parked.



#### Additional Wingtanks (with fuselage tanks installed, optional)

Additional flexible fueltanks (capacity 20 Liter each) can be installed in the wings of the FK 9. They are connected to the main tank and are filled and emptied by using an electrical pump. The overflow / vent (23) is connected to the vent system (8) of the main tank. Each tank has a fuel valve (19).


#### Handling of the wingtank:

To fill or empty the tank, the respective fuel valve (19) must be open and the pump must be switched to the "up" or "down" position.

Filling of the wintank has to be done on ground with at least 20 liter of fuel in the main tank. The wingtank is full as soon as fuel is flowing via the overflow / vent (23) into the vent system (8) of the main tank. Now the pump has to be switched off and the valve must be closed.

During flight, the fuel can be pumped out of the wingtank as soon there is space of at least 20 liter in the main tank.

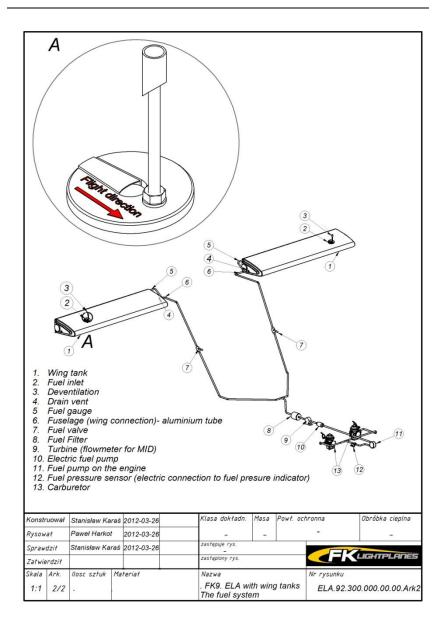




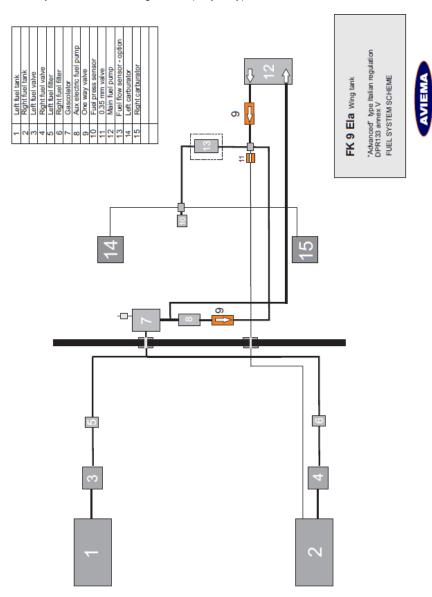
## **Option 2 Wing Tanks:**






Fuel quantity indication (5)

Fuel valve (7)


There are two wingtanks installed. Each tank has a fuel valve and a fuel quantity indication. Fuel caps and vents are on top of the wings. Fuel feeding to the engine is similar to option 1. Fuel must be used from one tank at a time. For takeoff and landing, the fullest tank must be used.

The drain valve is located underneath the wing. It must be assured, that no fuel spills on the cockpit windows during fuelling / draining, because fuel can damage lexan windows.

The aircraft for Italy also have a drain valve at the gascolator in the engine compartment.



# Fuel System Version Wing Tanks (Italy only):



#### **7.12.** Brakes

Brakes are controlled by a handle at the center console. Brakes are applied to both main wheels at the same time.

By closing a valve at the center console when pressure has been applied, the hydraulic brake can be function as a park brake.

#### 7.13. Heating and Ventilation

The FK 9 is optionally equipped with cabin heating. By pulling the lever below the instrument panel, heated air is allowed to enter the cabin through the front of the pilots feet. The cabin is ventilated by the vents in the doors.

#### 7.14. Electrical System

A detailed schematic of the electrical system is available under www.flugservice-speyer.de section "Tech Service".

A 12V engine-driven alternator delivers the required electricity.

If the red alternator control light lights up above 1800 RPM, (or MID / MIP gives a warning) shut off all electrical equipment not required for flight as the battery is not being correctly charged by the alternator and will quickly be discharged.

With Smart engine installed, land immediately as the engine ignition is powered by battery. The engine will stop as soon as the battery charge is exhausted.

Depending on the rating and charge status of the built-in battery as well as engine RPM, the engine can be expected to work for the indicated periods following a power generator fault (assuming that the battery is fully charged):

| Battery rating | 5.7 Ah         | 8 Ah       | 13 Ah      |
|----------------|----------------|------------|------------|
| Period         | 5 to 8 minutes | 10 minutes | 15 minutes |

#### Panel:

The electrical panel contains most of the switches and electric fuses.

The electrical system is designed for a maximum load of 12 A. Connecting a lot of high drain components (landing lights etc.) may result in a higher load. This can lead to overheating and / or an electrical smoke / fire condition and must be avoided under all circumstances.

#### Fuses:

Only fuses "with time lag" should be installed

Main Panel



Ext. Power Pump Eng.Instr. Generator Navigation 2A 8A 500mA 500mA 2A

**Additional Panel** 

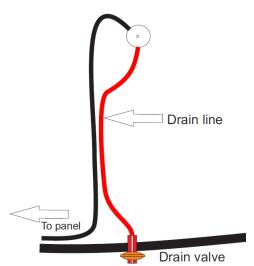


● Wingtank ●
up

off ●
on

down

Pump


**8**A

Wingtank Panel

2A

# 7.15. Pitot / Static System

## Static:



There is one static port on the left hand side of the fuselage. During preflight check it must be assured that it is clear.

The drain line is optional (mandatory in Italy).

#### Pitot:

There is one (unheated) pitot tube installed at the left hand wing strut. During preflight check it must be assured that it is clear

# 8. Handling, Servicing and Maintenance

#### 8.1. General

Every owner of an FK 9 should keep close contact to the manufacturer for best support.

#### 8.2. Ground Handling

Aircraft should be parked with the nose facing into the wind and secured by putting chocks in front of the wheels. To tie down the aircraft, attach long straps to the bolts connecting the wing to the strut and also tie down the nose-/tailwheel.

The aircraft should not be parked in wet conditions or exposed to UV radiation for a long period of time.

The windscreen should always be covered during parking to avoid getting dirty.

The FK 9 can be stored in a trailer. For details consult the manufacturer.

#### 8.3. Cleaning

A clean surface is very important for aircraft performance. Therefore the whole aircraft and especially the leading edges of the wings and propeller blades should be kept as clean as possible.

Cleaning is preferably done by using a lot of water, if required a mild soap may be added.

Once a year the painted surface should be treated with a silicon-free polish.

## 8.4. General Advice

- The vibration dampers at the engine mount should be treated regularly with vaseline to prevent aging.
- Fuel lines, cables and bowden-cables must not be damaged.
- Note: never turn the propeller for more than 1 turn in opposite direction
- Airplane maintenance must be performed following the manufacturer's latest maintenance schedule. The actual maintenance schedule can be downloaded from the website www.fk-lightplanes.com or www.flugservice-speyer.de

# 8.5. Regular Maintenance / Lubrication Schedule

Maintenance action is due after certain flight hours or time intervals as applicable.

There are some actions which must be done for the first time after the very first 2 / 10 / 25 flight hours. The regular maintenance intervals are 100 / 200 / 500 flight hours or every year / every 2 / every 4 years.

Engine maintenance must be performed additionally according to the respective engine manual.

Propeller maintenance must be performed additionally according to the respective propeller manual.

#### 8.6. Time between Overhaul (TBO)

- For the main structure: none
- recommendation: engine overhaul according engine manual
- recommendation: propeller overhaul according propeller manual

insert maintenance schedule FK 9 Airframe (DIN A4) here.

# 8.7. Fuel System Check / Cleaning

If the fuel tanks are contaminated with dirt (check the inside by using a torch), they must be dismantled (fuselage tanks only) and cleaned. For this, drain the complete system (by using the electrical fuel pump) and dismantle all connections. Clean the tanks by using fuel or spirit / alcohol. Do not use water or solvents.

#### 8.8. Control Surface Angle

|                      | Angle [°] | Tolerance [°] |
|----------------------|-----------|---------------|
| Elevator             |           |               |
| Up                   | -25       | +2 / -0       |
| Down                 | +11       | +2 / -1       |
| Rudder               |           |               |
| Right                | 18        | +2 / -1       |
| Left                 | 18        | +2 / -1       |
| Aileron (Flaps –10°) |           |               |
| Up                   | -20       | +1 / -1       |
| Down                 | +17       | +2 / -1       |
| Flaps                |           |               |
| Position 0           | -10       | +1 / -1       |
| Position 1           | +5        | +1 / -1       |
| Position 2           | +30       | +1 / -1       |

# 8.9. Jacking / Towing / Storage

#### CAUTION

As a general rule, apply force to aircraft structure only on main structural elements such as frames, ribs or spars.

#### Jacking:

Use following points for jacking:

- 1. lower engine mount where connected to the fuselage or engine mount junctions (hanging up)
- 2. main gear beam where connected to the fuselage
- 3. nose- / tailwheel where connected to the fuselage

#### Towing:

For towing (forward only), connect the rope to the main gear.

#### Storage:

To stow the dismantled wings, use storage tools with a minimum contact area of 150 mm. The leading edge should have no contact to the storage tool in the first 20 mm.

For long distance transport in truck, trailer or container the following dismantling and storage procedure is recommended:

- Dismantle airframe including wings, tailplane.
- Secure controls
- Dismount wheel fairings to avoid damages
- Dismantle propeller
- Disconnect electric circuits, dismantle fuses and battery
- De-install shock-sensitive avionics (radio/transponder/glasspanels) and pack in upholstered boxes

Additional for street transport in trailer or truck:

Remove liquids (oilsystem /coolingsystem / fuelsystem)

Additional for air transport:

Remove complete engine (counts as hazardous good for airfreight!)

Re-launching the aircraft in operation:

Proceed according to check list form "assembly plan / Montageplan"

# 8.10. Main / Subsidiary Structure

The main structure contains of:

- 1. fuselage structure (metal), tail unit structure, engine mount
- 2. landing gear (metal/carbon fibre composite)
- 3. control surfaces (metal)
- 4. main plane structure (metal/ carbon fibre composite)

# Repairs at the main structure must only be performed by authorized facilities!

The subsidiary structure contains of:

- 1. front fuselage covers / cowlings (glass fibre composite)
- 2. wheel pants (glass fibre composite)
- 3. spinner
- 4. inside cockpit: covers / consoles / floor
- 5. skin

#### 8.11. Materials for minor repairs

Repairs at the subsidiary structure may be performed by the owner, however it is recommended to consult the manufacturer or a certified repair center before commencing the work.

Materials available for fuselage repair:

- 1. Glass fibre layer "Köper" 160g/sgm
- 2. Epoxy-resin
- 3. Covering Ceconite 102 + adhesives (i.e. Polytak) + common dope
- 4. 2-component acrylic paint

# 8.12. Special Repair and Check Procedures

Use common procedures applicable for aircraft build from metal, composite and covering.

#### 8.13. Required Tools

No special tools are required for normal maintenance.

# 8.14. Weighing

Weighing has to be performed according to the Weighing Form. Weighing intervals according to applicable rules.

# 8.15. Mounting / Maintenance of the Rescue System

According to the respective manual.

#### 8.16. Assembly of the Aircraft

Assemble the aircraft as follows:

- Check all parts for damage
- Check fuselage and wings for loose or foreign objects
- remove all root tip covers
- Connect the wings to the fuselage (doors must be removed or closed)
- IMPORTANT for wing assembly: unfold the wing with the leading edge facing downwards; turn the wing into its normal position and push it towards the fuselage
- with wingtanks: connect the wing tank fuel line with the fuselage fuel line; take care that the gauges fit into the gap in the root rip when pushing the wings toward the fuselage; check that the fuel lines are not kinked
- connect the electric wires; install root rip covers
- close and secure both wing bolts (safety pins)





• Install the strut with its two bolts (the upper one is screwed)





- Cover the gap between wing and fuselage with tape for better aerodynamics
- Secure all bolts
- Install the other wing in the same manner
- The storing device at the aft fuselage can be removed now
- Mount the outer parts of the elevator
- Connect and secure the rods for ailerons
- Connect the pitot tube line
- Install the doors
- Install the strut covers (if available)
- Check the function of all flight controls and flaps

To disassemble the aircraft follow above mentioned steps in reverse order, observe the following steps.

- If required, remove the elevator tips
- install the storing device for the wings at the aft part of the fuselage
- Note: the screws at the main tube of the folding mechanism (overhead the pilots) are the stop for the folding mechanism; they must only be removed it is intended to remove the wings completely from the fuselage
- to fold the wing:
   pull the wing outside until the stop, turn it 90° (the leading edge facing to the ground), now fold it and store it into the device

# 9. Supplements

#### 9.1. General

This chapter contains information concerning additional or differing equipment of the aircraft. Additional manuals and other useful information are indicated.

#### 9.2. Engine Manual

A separate manual for the engine is supplied with every aircraft. Specifications of this manual are part of the airplane manual and must be observed.

#### 9.3. Rescue System

A separate manual for the rescue system is supplied with every aircraft. Specifications of this manual are part of the airplane manual and must be observed.

#### 9.4. Avionics / Special Engine Instruments

A separate manual for avionic components is supplied with every aircraft. Specifications of this manual are part of the airplane manual and must be observed. The equipment is installed according the manual and checked for proper operation.

# 9.5. Kremen Propeller

Limitations, normal / abnormal operation and maintenance of the Kremen propeller must be done according the propeller manual.

# 9.6. Sailplane Towing

# 9.6.1. Technical Data / Limitations

| 1. | Rotax 912S/ULS, Prop Warp / DUC / Woodcomp      |        |     |
|----|-------------------------------------------------|--------|-----|
| 2. | max. sailplane gross weight*                    | 650 kg |     |
| 3. | takeoff distance to 15 m / 50ft height          | 550 m  |     |
| 4. | towing rope type: "200 Polyester / 6mm" 600 daN |        | daN |
|    | max. mass of towing rope (including all parts)  | 1,5    | kg  |
|    | recommended designed fraction value             | 150 d  | daN |
|    | max. fraction value towing aircraft             | 200 0  | daN |
|    | rope length                                     | 45-5   | 5m  |
| 5. | min. towing speed                               | 95 kı  | m/h |

<sup>\*</sup>check for further recommandations in the following chapters

Valid for ISA conditions. For further information contact the manufacture

#### 9.6.2. Towing General

Towing is performed without a passenger and with a maximum of 50 ltr of fuel.

A mirror has to be installed.

#### 9.6.3. Towing Takeoff

Electrical fuelpump ON. Normally perform takeoff with flaps position 1. On paved rwys with fast sailplanes flaps up is also possible. Commence takeoff roll slowly until the rope is straight. Watch the sailplane, do not climb too steep after liftoff.

Aim for best towing speed of about 110 km/h (flaps 1) or 130 km/h (flaps up). Watch CHT and oil temperature carefully. If required increase towing speed and reduce power. If temperatures do not stabilize 5°C below limits discontinue tow for safety reasons.

#### 9.6.4. Towing Disconnect

The disconnect manoeuver has to be briefed with the sailplane pilot in advance. The sailplane pilot must assure a safe distance to the towing plane.

After towing, the towplane returns to the airport for dropping the rope. Avoid cooling down the engine too fast, keep engine temperatures within limits.

The yellow towing clutch handle for disconnecting the rope is located close to the throttle.



## 9.6.5. Towing Landing

Landing should be performed without the towing rope.